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Interface Sharpness in the Potts Model 

J e a n  R u i z  I 

Received August 3, 1988; final March 7, 1989 

A simple proof is given for the existence of a sharp interface between two 
ordered phases for the three-dimensional 2n-state Ports model (n integer). 
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1. INTRODUCTION 

Among the models which exhibit phase transitions is the well-known Ising 
model, for which the properties of the interface between the + and - 
phases coexisting at low temperature have been widely studied. In 
particular, Dobrushin (1) has shown that in three dimensions this inter- 
face is sharp at low temperature. By a different and very simple method 
van Beijeren (2) has shown that this interface is sharp for every temperature 
smaller than the critical temperature of the two-dimensional Ising model. 

Richer possibilities in such problems occur when three or more phases 
coexist. This is the case for the q-state Potts model introduced in 1952 (3) 
as a generalization of the Ising model by enlarging the values that the spins 
cain take from two to an arbitrary integer q. As 1 shall recall more 
precisely in Section 2, in two or more dimensions, this model exhibits, for 
q large enough, a first-order phase transition at some inverse temperature 
/~t where q ordered phases coexist with a disordered one. Above /3, only 
ordered phases coexist and below /~, there is a unique phase; the surface 
tensions between two ordered phases and the surface tensions betweens any 
ordered and the disordered phase are strictly positive when the considered 
phases coexist. 

I here prove that in three dimensions the interface between two 
ordered phases is sharp, if q = 2 n (n ~> 1), for any temperature smaller than 
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the transition temperature of the two-dimensional q-state Potts model. I 
follow the method of van Beijeren using the spin-l/2 representation of the 
Potts model, (4) which allows use of the Lebowitz inequality. (s) The use of 
the F K G  inequality (6) in the van Beijeren method will be replaced in our 
case by a correlation inequality implying in particular that at fl, the inter- 
face between two ordered phases is wetted by a film of the disordered 
phase. (7) 

The paper is organized as follows. In Section 2, I recall the phase 
diagram of the Potts model and show that several definitions of different 
authors for the disordered phase coincide. The main results are given in 
Section 3 and concluding remarks in Section 4. 

2. THE POTTS M O D E L  A N D  ITS PHASE D I A G R A M  

To introduce the q-state Potts model, associate at each lattice site 
i~2~ d a spin xi taking its values in the set {1,..., q}. The Hamiltonian in a 
finite box A c 7] a is given by 

= - 2 a ( x , ,  x j )  ( 1 )  
( i ; j )  

where the bracket ( ; ) restricts the sum over nearest neighbor (n.n.) pairs 
and 6 is the Kronecker symbol. Denote by (.)fA (/3) the expectation values 
corresponding to the Gibbs measure ZA 1 exp{-- /~A},  and by ( . ) r ( /~) i t s  
infinite-volume limit obtained by letting A T 7/a. They corresponding to the 
so-called free (f) boundary condition (b.c.). We also introduce other b.c. 
with the use of an infinite external field. Agreement of the notation with 
Section 3 is the reason for doing this in such a way. Namely, we add to NeA 
the term 

= - a)-  K,a(x,, b) ( 2 )  
t E A  i ~ A  

where all the H; and Ki are nonnegative, and a, be  {1 ..... q}. The so-called 
closed or ordered b.c. corresponds to infinite Hi for every site i in the 
boundary OA of A (~?A = {ie A/3jE Za\A s.t. i and j are n.n.}), while Hi is 
zero otherwise and Ki is zero for every i in A. 

Whenever q is large enough, the phase diagram of the d-dimensional 
(d>~ 2) q-state Potts model is as follows. 

There exists a unique inverse temperature fit, where the magnetization 
M d ,  q =- (q-- 1)-l(qa(xi, a ) -  1 )a(fl) is discontinuous, such that: 

(a) For fl < fl, there is a unique phase. 
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(b) For fl > fl, every translation-invariant (TI) Gibbs state ( . ) i ( f l )  is 
a convex linear combination of the q ordered states: 

q q 

( . ) ' ( ( /~)  = Y~ ~, ( .  )"(/~), Y. ;., = 1 
n = l  n = l  

(c) For fl = fl, every TI state is ,expressible as 

q q 

< . ) I ( ] ~ ) =  E ~n< ' )n( /~) - } - '~ f< ' ) f ( f l ) '  E ) ~ n - ~ - ) ' f =  1 

n = l  n = l  

Statements (a)-(c) have been proved by Martiros~an, (s) but with a slight 
difference. Namely, in ref. 8, statement (c) is 

q 

( . ) ' ( f l , )  = F,  2 ; ( - ) " ( f l , )  + ,~,,( .  ) ' " ( / L )  ( 3 )  
n=l  

where the state (.)aJs is obtained with the so-called disordered b.c. State- 
ment (c) can be proved in the following way. 

Proof of Statement (c). The free state is translation invariant: the 
proof is standard (9~ once one has monotonicity properties in the volume; in 
our case they follow from the Ginibre inequality, (1~ which applies to the 
Potts model, as noticed in ref. 11. Starting from (3), we have 

q 

( " ) f ( f l t )  ~--- E ~ ; ( "  )n( f l , )  nt - )~dis( " )dis(fit) (4) 
n=l  

In particular, this implies for any n.n. pair i, j 

q 

Y~ .v.[ ( 6(xl, xj) )" (L  ) -. ( 6(x .  x) / (L)]  
n=J .  

+ ,V~,s[(6(x,, xj))  d ' ' -  (,5(xi, xj)/(L)] = o (5) 

We then use that for any TI state and any n e { 1 ..... q} 

((~(Xi, Xj) )f(fl) ~ ((~(Xi, Xj) )l(fl) ~ ((~(Xi, Xj) )n(fl) (6) 

as shown by Pfister(12); on the other hand, there exists some fl~ such that 

( (~(x,, Xj) ) n(fl;) > ( 6(Xi, Xj))f(/~;) (7) 

as shown in refs. 13 and 14. Statements (a) and (b) imply that fl; = fl, and 
then we immediately get that relations (5)-(7) imply 2" = 0 for every n and 
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hence 2~is = 1 since .r ~ "~n']t "t-' 2 tdis = 1. Therefore the free state coincides with 
the disordered one. | 

Note that they therefore coincide also with the state ( . )  ~ defined by 
Kotecky and Shlosman, (15) as conjectured by Pfister. (12) 

In two dimensions Potts (3) conjectured the transition point to be 
fit(q, 2 ) =  log(x/q + 1 ), the self-dual point. Baxter (17) has shown that a first- 
order transition indeed occurs at the conjectured point, for all q ~> 4, with 
a jump of magnetization; for q ~< 4 he got a continuous transition. Hinter- 
mann eta/. (16) proved the uniqueness of the transition for q >4 ,  showing 
in particular that the free energy is analytic out of the self-dual point. Thus, 
for q ~> 4 and d = 2, this result and the analysis of TI states of ferromagnetic 
systems in ref. 12 imply the statements (a) and (b), i.e., the phase diagram 
out of the transition point. I now turn to the main object of this paper. 

3. M A I N  R E S U L T  

I first introduce the spin-l/2 representation. (4) Whenever q = 2  n, n 
integer, the states x~ can be put in one-to-one correspondence with a 
configuration of n spins a~-~ - _+1, ~ = 1,..., n, which can be thought of as all 
being at the same site i or as living on n copies of the lattice. We have 

6(xi, xj)= f i  1 +aTa; 
~ x = l  2 = 2 - " ~  [ I  aTa]+2-" (8) 

E ~ E  

where the sum runs over all nonempty subsets E of { 1 ..... n } and if a is the 
particle (1 ..... 1 ), 

6(xi, a) = 2 - "  ~ l-[ a7 + 2 " (9) 
E c r  

I now apply the method of van Beijeren to this system. To this end, 
consider a simple cubic lattice A on a cube of 2 N +  1 horizontal layers 
numbered - N ,  - N +  1 ..... N. The spins on the central layer 0 are num- 
bered a~,  o-~ ..... ~ = 1 ..... n, the spins on the layers 1 ..... N are numbered 
a~, aj ..... and those on the layers - 1  ..... - N  are numbered a_i ,  a~j  ..... 
This numbering is chosen such that the sites i and - i  are mirror images 
of each other with respect to the central layer. Also consider a two-dimen- 
sional square lattice g2 of (2N+ 1)x  ( 2 N +  1) sites with spins numbered 
d~,, ff,~ .... (all the spins in both systems may assume the values ___ 1 and 

= 1 ..... n). The Hamiltonians of both systems are given by 
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" l + a i a $  + 
HA(0" ) = J  

<' I) 1 " " ~ = 1  

§ 

2 J <m..> ~=l 

J E 1 § 0"m0" ~ § 

( i ,m> 1 2 ~=1 
2 h i f l  l+a:  l-a'_ifl l+o-~i + 

i ~ = 1  i 

+ZH  H 1.+,:,-;, (lo) 
2 

Ha(6)= E f l  l+6~ ,e :+ZH m f l  1 + 5 =  (11) 
2 2 <re, n> a = 1 m ct= 1 

All the hi and Hm are nonnegative. We are especially interested in the case 
where hi and Hm are + m at the boundary sites and zero otherwise. This 
gives for A a system with mixed boundary conditions a -= (1, 1,..., 1 ) on the 
top half and b =  ( -1 ,  1 ..... 1) on the bottom half. 2 

I now define, in analogy with the method of Percus, os/ the new 
variables 

ct 1 a c( a 1 a - ~  
S i = ~ ( a i §  i ) ,  S m " = - ' ~ ( o - m §  

t =�89 

which may assume the values -1 ,  0, 1 with the constraints 

si~- 0--, t ~ ' = -  _+1 and s i~= _ _ J l - - - ~ t ~ - O  

The sum of HA(0" ) and Ha(6) can be expressed in these new variable as 

HA(a ) + Ha(6) 

<i , j )  e t e E  

+ J '  Z ~ [ 1-] (s:  + t~,)(a: + t;)+ [I ( s : - s : ) ( s : -  t:)] 
<re, n )  ,~eE  ~ E  

+ J '  ~ ~ 1-I ( s2 ,+ t ,~) [ l~  (s~+t:)+ I-I (s~'-t~')] 
<re, i )  E ~ E E  ~eE  a E E  

i a e E  o ~ E  

.m ? (s:+ ,:,+ n 
m ~ E  

+ 2- '[L + S -  (2N+ 1) 2] (12) 
2 In fact, one can choose for b any particle different from a. 

822/56/5-6-5 
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where J '  = J/2 n and e(E) equals - 1 if E contains 1, and 1 otherwise. L is 
the number of n.n. in A and S the number of sites in A. 

Since the Hamiltonian (12) is clearly ferromagnetic in the s and t 
variables, the inequality, 

Sm U tm 

holds true for any E, E' c { 1 ..... n }. Here ( . )  denotes the expectation with 
respect to the product measure of the canonical measure for a and #, 
respectively. We deduce from (13) that for any subset E of {1 ..... n} 

( H  O'm~/ ~ ( U  -~/0" m (14) 
~E ~E 

Denoting by ( - ) ] b ( J )  the expectation for the canonical measure a 
(with the above considered values of h i and Hm), we get that the expecta- 
tion value of 

q6(Xm, a ) - - l = Z  1-[ ~7~m (15) 
E ~E 

is greater than the spontaneous magnetization of the two-dimensional 
Potts model: 

and 

( q6(Xm, a) -- 1 )aAb(J ) >1 ( q~)(Xm, a) -- 1 ) ~(J) >>. (q - 1) M2,q(J ) (16) 

((~(Xm, a)--6(Xm, c))aAb(J) ~ ((~(Xm, a)--(~(Xm, c))~(J) (17) 

for any c different from a. By the correlation inequalities derived in ref. 7 
(see Theorem 1), we know that the expectation of (15) with respect to the 
Gibbs measure ZA 1 exp[ - /3 (~A + ~A)] is increasing by applying a field in 
the direction of the particle a and decreasing by applying a field in the 
direction of the particle b. Namely, if E(f; g) = E(fg) - E ( f )  E(g) denotes 
the truncated expectation of f and g with respect to this measure, then for 
any subsets A and B of A one has 

E (i~A ~(xi, a); U 6(2j, a)) >~O 
j~B (18) 

a ;H 
j~B 
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Therefore, 

1 
<(~(Xm, C)>a__Q(J) ~ <(~(Xm, c ) > f ( J )  =--  

q 

and thus the difference of the lhs of inequality (17) is also greater than the 
spontaneous magnetization of the two-dimensional Potts model, 

q< b(Xm, a ) -  6(x,,, C) > ~b(j) ~ ( q _  1)M2,q(J ) (19) 

I now consider, as in ref. 2, the system with 2N layers and similar b.c., 
where there is a symmetry between the upper and lower halves of the 
system. This last system can be obtained in the following way. Start with 
a (2N + 1)-layer system with infinite boundary field h i and apply an infinite 
field to all spins in the layer N. The resulting system of 2N layers, A', has 
the a boundary condition on the top half and the b boundary condition on 
the bottom half. We denote by (->~b the expectation associated with this 
system. The fact that the expectation of (15) as well as the expectation of 
6(Xm, a)--C~(Xm, b) for this system are greater than the corresponding 
expectation for the (2N+ 1)-layer system is a consequence of correlation 
inequalities (18). Thus, 

<qtS(Xm, a) -- 1 >aAb,(J ) >~ <qc~(Xm, a) - 1 >Ab(J) 

>>. (q - 1 ) M2,q(J) (20) 

q< g(Xm, a ) -  6(x m, b)>~f,(J)~ q(  g(Xm, a ) -  6(xm, b)>~b(j) 

~> (q-- 1) M2,q(J) (21) 

Moreover, over can easily show, by using the Fortuin-Kasteleyn random 
cluster expansion, (18) that for any c ~ {1 ..... q}, different from a and b, 

(qg(Xm, C) -- 1 >"Ab,(J) ~ 0 

and we get 

q(  6(x,,,, a) - 6(Xm, C) >~Ab,(J) ~ ( q6(Xm, a) -- 1 >~f,(J) ~ (q - 1) M2,q(J) 

(22) 

By symmetry we obtain for any site i of the - 1  layer and any particle d 
different from the particle b 

( q6(xi, b ) -  1 > ~b(j) >~ (q _ 1) M2,q(J ) (23) 

q<t~(Xi, b ) -  6(xi, d) >~Ab,(J) >~ ( q -  1)M2,q(J ) (24) 
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Therefore we conclude from (20)-(24) that the state ( . )ab  is non transla- 
tion invariant and that under the boundary condition ab there is a sharp 
interface between the layers 0 and - 1  provided the spontaneous 
magnetization of the two-dimensional Potts model is strictly positive. This 
is the case if q > 4 for J>~ fl,(q, 2), and if q ~< 4 for J >  fl,(q, 2). 

We clearly also prove (20)-(22) for any site of the layers 1,..., N -  1, 
and (23), (24) for any site of the layers - 2  ..... - N .  Let us notice that 
whenever q is large and J~> log(x/q + 1), 

Note some simple generalizations: 

1. The lattice need not be a cube. Arbitrary shape may be considered, 
provided the layers n and - n  are minor images of each other with respect 
to the central layer. 

2. The restriction to nearest neighbors may be loosened. The 
inequality (14) still holds, while inequalities (18) can been. generalized to 
the case of arbitrary pair (not necessarily n.n.) interactions. (2~ (For the 
Ising model, q = 2, the extension to long-range interactions is given in the 
Appendix B of ref. 21 and was previously noticed in ref. 2.) 

3. The result generalizes to an arbitrary dimension d greater than 3. 

4. C O N C L U D I N G  R E M A R K S  

The above results show that the roughening temperature of the three- 
dimensional Potts model is greater than the transition temperature of the 
two-dimensional Potts model. For q large, it is expected that this roughen- 
ing temperature is equal to the transition temperature (of the 3D model), 
i.e., that the interface between two ordered phases is sharp up to the 
transition temperature, at which it is wetted by a film of the disordered 
phase. It is also expected that for q large the a-f  interface (between an 
ordered and the disordered phase) is sharp at the transition temperature. 
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